25nm Immersion Lithography at a 193nm Wavelength

نویسندگان

  • Bruce W. Smith
  • Yongfa Fan
  • Michael Slocum
  • Lena Zavyalova
چکیده

The physical limitations of lithographic imaging are ultimately imposed by the refractive indices of the materials involved. At oblique collection angles, the numerical aperture of an optical system is determined by nsin(θ) , where n is the lowest material refractive index (in the absence of any refractive power through curvature). For 193nm water immersion lithography, the fluid is the limiting material, with a refractive index of near 1.44, followed by the lens material (if planar) with a refractive index near 1.56, and the photoresist, with a refractive index near 1.75. A critical goal for immersion imaging improvement is to first increase the refractive indices of the weakest link, namely the fluid or the lens material. This paper will present an approach to immersion lithography that will allow for the exploration into the extreme limits of immersion lithography by eliminating the fluid altogether. By using a solid immersion lithography (SIL) approach, we have developed a method to contact the last element of an imaging system directly to the photoresist. Furthermore, by fabricating this last element as an aluminum oxide (sapphire) prism, we can increase its refractive index to a value near 1.92. The photoresist becomes the material with the lowest refractive index and imaging becomes possible down to 28nm for a resist index of 1.75 (and 25nm for a photoresist with a refractive index of 1.93). Imaging is based on two-beam Talbot interference of a phase grating mask, illuminated with highly polarized 193nm ArF radiation. Additionally, a roadmap is presented to show the possible extension of 193nm lithography to the year 2020.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Refractive Index Immersion Fluids for 193nm Immersion Lithography

For the next-generation immersion lithography technology, there is a growing interest in the immersion fluids having a refractive index larger than 1.5 and low absorbance at 193nm wavelength. In this paper, we report our effort in identifying new immersion fluid candidates. The absolute refractive index values and thermo-optic coefficients, dn/dT, were measured with 1x10 and 1x10 accuracy respe...

متن کامل

Comparison of various lithography strategies

At present, the question of the move from 193 to 157nm lithography is under discussion. There are still several major issues such as the development of 157nm photo-resists and pellicles, as well as calcium-fluoride lens material availability. The extension of the 193nm lithography down to the 65and 45-nm half pitch technologies is now considered as a serious alternative. This requires several t...

متن کامل

Immersion lithography with numerical apertures above 2.0 using high index optical materials

The progress of optical lithography has approached the sub-30 nm regime using 193nm excimer lasers as the exposure sources. To increase the numerical aperture (NA) further, many issues, especially those related to materials, need to be addressed. In this paper, we present the analytical and experimental results of oblique two-beam lithography with sapphire (Al2O3) as the optical material. At 19...

متن کامل

Alternative Optical Technologies - More than curiosities?

As optical lithography reaches it physical limits, alternative technologies become interesting. There have been several such alternatives that are still optical, but have some departure from conventional projection methods. This papers presents some of these alternative optical technologies, namely the use of surface plasmons and plasmonic lithography, metamaterials and superlenses, evanescent ...

متن کامل

The New, New Limits of Optical Lithography

The end of optical lithography has been so often predicted (incorrectly) that such predictions are now a running joke among lithographers. Yet optical lithography does have real, physical limitations and even more real economic limits, and an accurate estimation of these limits is essential for planning potential next generation lithography (NGL) efforts. This paper will review the two types of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005